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Designability of lattice model heteropolymers
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Protein folds are highly designable, in the sense that many sequences fold to the same conformation. In the
present work we derive an expression for the designability in a 20-letter lattice model of proteins which,
relying only on the central limit theorem, has a generality which goes beyond the simple model used in its
derivation. This expression displays an exponential dependence on the energy of the optimal sequence folding
on the given conformation measured with respect to the lowest energy of the conformational dissimilar
structures, an energy difference which constitutes the only parameter controlling designability. Accordingly,
the designability of a native conformation is intimately connected to the stability of the sequences folding to
them.
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I. INTRODUCTION

Even a quick look at the set of known proteins~protein
data bank database! reveals a striking feature. While ther
are tens of thousands of protein sequences, they only ass
some thousands of folds. In other words, proteins are hig
designable. This concept can be quantified by measuring
number of sequences that fold uniquely into a particu
structure.

With the use of a simple 20-letter lattice model@1–4# of
protein folding it has been shown@5# that the whole issue o
estimating the numbern of sequences that fold to the sam
conformation is reduced to enumerate how many of th
have native energy lying below a thresholdEc , the energy
which any sequence with the same composition display
the conformation structurally dissimilar to the native confo
mation @2#.

The aim of the present paper is to provide a reliab
analytic expression forn, which we shall show increase
exponentially with the gapd between the native energy o
the optimal sequenceEn and the threshold energyEc . This
functional form is found to be universal, as it emerges fro
the central limit theorem. We have, furthermore, found t
while the parameters definingn depend on the interactio
matrix, they are independent of the particular choice m
for the native structure or for the optimal sequence.

In Secs. II and III we briefly review the 20 letters lattic
model of proteins in general and the question of protein d
ignability in particular. The quantitative, analytic answer
the question of how many mutations a designed protein
erates is given in Sec. IV. The conclusions are collected
Sec. V.

II. LATTICE MODELS

A useful theoretical approach to study protein folding
provided by a simplified lattice model, where the protein i
string of beads that is arranged on a cubic lattice@6–8#. The
configurational energy of a chain of N monomers is given

E5
1

2 (
i , j

N

Um( i ),m( j )D~ urW i2rW j u!, ~1!
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whereUm( i ),m( j ) is the effective interaction potential betwee

monomersm( i ) andm( j ), rW i and rW j denote their lattice po-
sitions, andD(x) is the contact function. In Eq.~1! the pair-
wise interaction is different from zero wheni and j occupy
nearest–neighbor sites, i.e.,D(a)51 and D(na)50 for n
>2, wherea indicates the step length of the lattice. In add
tion to these interactions, it is assumed that on-site repul
forces prevent two amino acids from occupying the same
simultaneously, so thatD(0)5`.

We shall consider throughout a 20-letter representation
protein sequences whereU is a 20320 matrix. A possible
realization of this matrix is given in Ref.@9# ~Tables 5 and 6!
where it was derived from frequencies of contacts betw
different amino acids in protein structures. The employm
of a 20320 matrix ensures that the threshold energyEc is
well defined, depending only on the interaction matrix e
ments and on the composition of the protein in terms
amino acids. The model we study here is a generic h
eropolymer model that has been shown to reproduce im
tant generic features of protein-folding thermodynamics a
kinetics, independent on the particular potential chos
@10,11#. However, in using such an approach, one sho
keep in mind that the labeling of amino acids~spherical
beads all of the same size and with no side chain! is generic
and there may be no obvious relation between those la
and labels for real amino acids.

Good-folder sequences are characterized by a large
d5Ec2En ~compared to the standard deviations of the
contact energies! between the energy of the designed s
quence in the native conformationEn , and the lowest energy
of the conformations structurally dissimilar to the native co
formation@1–5#. In other words, good folders are associat
with a normalized gapj5d/s@1, a quantity closely related
to thez score@12#. For example, the 36mer sequence listed
the caption to Fig. 1 and calledS36 in the literature@13–18#,
designed by minimizing the energy in the target~native! con-
formation with respect to the amino acid sequence for fix
composition has, in the units considered here (RTroom
50.6 kcal/mol@9#!, an energy gapd52.5 and thus a suffi-
ciently large value ofj (52.5/0.3'8.33) so as to ensure fas
folding. In fact, Monte Carlo~MC! simulations carried out a
©2001 The American Physical Society04-1
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the temperatureT50.28 of 3000 36mers with energies,
the native conformation, lying inside the gap fold in tim
<73107 MC steps@5# ~for caveats see Ref.@19#!. In par-
ticular S36 folds in 6.53106 MC steps.

It has been also shown that most of the thermodynam
@18# and dynamical@5,13# behavior of designed proteins
controlled by only 5–10 % of the sites. As a consequen
making mutations in these sites, which are called ‘‘hot’’
Ref. @18#, one destroys, as a rule, the ability the protein h
to fold ~denaturation!. On the other hand, the effects of su
stitutions in any other site~that can be regarded as ‘‘cold’’!
are small, leading to neutral mutations.

III. DESIGNABILITY WITH 20-LETTER MODELS

While 20-letter heteropolymers capture the essential c
ponents of real proteins, it is hardly possible to enumerate
sequences which have a given conformation as their no
generate ground state. Accordingly, it is not possible to c
culate the exact designability of protein conformations.
bypass this problem, we shall determine designability fr
energetic considerations, using a strategy which relies on
fact that all sequences which have an energy lower thanEc
fold on short call, in any case in times which are mu
shorter than that associated with the random search@20#.

Any sequence of a given lengthN ~e.g., N536) can be
obtained makingm<N mutations ~i.e., substitution of an
amino acid in a given site with a different one! in the mini-
mum energy sequence@e.g., S36 in the case of Fig. 1~a!#.
Consequently, the designability of a conformation can
found starting from the minimum energy sequence, coun
how many mutations lay within the gapd5Ec2En . If DE
is the change in the energy of the native state produced
mutation,pm(DE) the energy distribution probability assoc
ated withm mutations andnm

tot the total number of sequence
that can be produced by introducingm mutations in the
minimum energy sequence, designability can be defined

n5 (
m51

N

nm , ~2!

FIG. 1. Three conformations are used as natives in the pre
study. SequenceS36, which is a good folder onto structure~a!, is
SQKWLERGATRIADGDLPVNGTYFSCKIMENVHPLA.
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pm~DE!d~DE!. ~3!

So far, we have done nothing more than express the p
lem in another way, since to know the spectrum of mutat
energies of the optimal sequence one has again to enum
all sequences. In fact, it looks like as if we have made thin
even worse, in that now one has to find the optimal seque
which is a nontrivial problem, and also has to ensure thatEc
does not change with mutations.

We shall show in the following that the distribution o
mutation energies does not depend on the particular struc
or on the particular sequence chosen~provided thatE!Ec)
nor on the contact energy matrix used to design the prot
but only on its composition and on the number of conta
~or the length, if it is fully compact!. This observation leaves
room for approximations. In fact, if one is able to find a
approximate expression forp(DE), such an expression wil
hold for all model proteins of the same length. Furthermo
the knowledge of the sequence associated with the glo
minimum of energyEn is not necessary~because all se-
quences have the same spectrum of mutations!, only the
value of En is required. Consequently, even if the optim
sequence cannot be known without a full enumeration of
sequences, it is allowed to use any other sequence with
ergy E'En , introducing in this way only an error in the
integration boundaries~and not on the function to be inte
grated!. It is then possible to calculate designability of
structure from Eqs.~2! and ~3! using an approximate distri
bution p(DE) and an approximate value ofd.

The most conservative way to calculate the number
sequences which fold to a conformation is then to us
distribution pm(DE) found only by swappings between th
residues of the optimal sequence, as in such a way the c
position is conserved andEc does not change. On the othe
hand, since there are also sequences with different comp
tions folding to the same conformation, one is also forced
principle, to calculate the numbern associated with pointlike
mutations. The values found from the swapping of am
acids and from pointlike mutations can be viewed as
lower and the upper limit to designability, respectively.

In Figs. 2~a! and 2~b! we display the unnormalized energ
distribution probabilities associated with two compositio
conserving and with two pointlike mutations ofS36 ~the in-
tegral of these distributions being the total number of
quences!. Each of these curves can be well fitted by the s

of two Gaussians, whose means areDE251.2 and DE2

53.0 @Fig. 2~a!, composition conserving case# and DE2

51.1 andDE253.6 @Fig. 2~b!, pointlike mutations case#.
Standard deviations ares250.7 ands251.0 @Fig. 2~a!# and
s250.7 ands251.1 @Fig. 2~b!#. The behavior of these two
distributions seems very alike, except for the fact that
area below the composition-conserving curve is mu
smaller than that below the pointlike mutations curve. This
because much fewer mutations can be made in the first
in the second case and, consequently, the associated G
ian behavior is less well defined.

nt
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The overall structure of the curves shown in Fig. 2 can
understood from the fact that the average value ofDE for
‘‘cold’’ sites is 0.65 and for hot sites is 2.87@18#. Accord-
ingly, the low-energy peak can be associated with two m
tations in cold sites, while the high-energy peak can be
sociated with a mutation in a cold site and a mutation in a
site. The contribution from mutations in two hot sites lea
to an enhancement of the high-energy tail of the curve. C
cerning the Gaussian behavior, we note that the energie
sociated with the 19 possible mutations on a given cold
are uncorrelated. In other words, one has to pay an en

DE2/2'0.6 ~concerning the factor 1/2 one is reminded of t

fact thatDE2 gets contributions from two mutations! to re-
move the wild-type residue, reflecting the fact that it h
been optimized. Second, one has to introduce a new res
in the niche left by the wild-type residue. The Gauss
shape of the distribution suggests that the niche is neu
with respect to the new residue and that the new interact
are merely random. To be more precise, the change in en
DE upon mutations is the difference between the ene
needed to remove the original residue~which is roughly con-
stant and assumes two different values for cold and for

FIG. 2. Energy distribution for two composition-conserving~a!
and pointlike ~b! mutations. The parameters of the Gaussian
~dotted line! are given in the text.
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sites! and the sum of a number of contact energies associ
with the new residue, energies which can be considered
random numbers. Being the sum of random numbers,
energy associated with the new residue is forced to res
the central limit theorem, and consequently its distributi
approaches a Gaussian function. Of course, an exact Ga
ian distribution could be reached only if the number of ne
est neighbors of each site were infinite~while in a cubic
lattice this is, at most, five!. On the other hand, the fact tha
pm(DE) can be accurately fitted by Gaussian distributio
@cf. e.g., Fig. 2~b!# testifies to the fact that we are not fa
from the conditions in which the central limit theorem hold

While the hypothesis that cold mutations give rise
Gaussian-like peaks is quite grounded, due to the unco
lateness of the energy contributions of cold sites, it is u
likely that the central limit theorem works properly for ho
sites, whose energy contributions are correlated@5#. In order
to calculate the degree of designability of a protein conf
mation, we only need to know the contributions from co
sites and, consequently, we do not need to better charact
the peaks associated with hot sites.

We have found that the distribution of mutation energ
are rather universal functions. Examples of such a beha
are shown in Fig. 3, where two-pointlike-mutations spec
p2(DE) associated with low-energy 36mer sequences o
mized~making use of the elements of Table 6 of Ref.@8#! on
three different conformations@cf. Figs. 1~a!– 1~c!# and with
three sequences designed on the same conformation@Fig.
1~a!# are displayed. Similar results have been obtained
chains of different lengths. Furthermore, using different
320 interaction matrices lead to the same Gaussian beha
of p2(DE), although the mean values and the standard
viations are different. This is again a consequence of
central limit theorem. This can be seen from Fig. 4, whe
we display the functionp2(DE) associated with two point-
like mutations onS36 ~cf. Fig. 1!, but making use this time o
the interaction matrix elements listed in Table 5 of Ref.@9#.
Because, making use of this matrix, the average chang
energy upon mutations in cold sites is zero, while that in
sites is 0.35, it is easy to identify the peaks associated w

two cold mutations (DE250 ands250.34), with one cold

and one hot mutations (DE250.35 ands250.02), and with

two hot mutations (DE250.70 ands250.22).
Summing up, the functionp2(DE) associated with chains

of different length and sequence as well as designed on
ferent native conformations overlap quite nicely, suggest
that the spectrum of both composition conserving and n
conserving mutations is universal. On the other hand,

actual value ofDE2 and s2 characterizing the differen
peaks of the energy distribution probability depend on
matrix used to describe the contact energies among
amino acids.

The univerality of the energy distribution probability is i
agreement with the interpretation of the main peaks of
spectrum of mutations of a designed protein in term of c
and hot sites. In fact, the properties of the hot sites are ra
homogeneous, their contribution to the mutation spectr
being universal. Assuming, furthermore, that the interactio

t
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associated with the mutations in cold sites are random,
resulting energy distribution is Gaussian~and so universal!,
and its standard deviation depends only on the interac
matrix, while its average value depends on the degree
optimization of the wild-type monomer. This, in turn, can
approximated by the degree of optimization of the wh
chain~measured by the energy gapd) divided by its length,
a quantity which is essentially constant for long chains@24#
~for example, in the case ofS36 this number is 2.5/36
50.07).

IV. HOW MANY GOOD FOLDERS?

The basic idea to calculate the designability of a mo
protein, as we have discussed above, is to find a simple
proximation to the universal distribution of energies asso
ated with mutations onto the optimal sequence, integrate
distribution up to the gapd, and normalize this result to th
total number of mutations that one can make@cf. Eqs.~2! and

FIG. 3. The distribution of energies associated with tw
composition-conserving mutations made on three sequences
signed on three different 36mers conformations.~b! The spectrum
obtained making two composition-conserving mutations on th
sequences designed on the same conformation~the one displayed in
Fig. 2!. The values of the energy gap ared52.5 ~dotted curve!, d
51.6 ~solid line!, andd51.3 ~dashed line!.
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~3!#. As a consequence of this, designability turns out
depend only on the length of the protein~through the total
number of mutations! and on the gapd.

In order to calculaten using Eqs.~2! and~3! we first have
to know the total numbernm

tot of sequences that can be o
tained by makingm sequence-conserving mutations~swap-
pings! in the optimal sequence. This number can be obtai
by counting the number of ways one can selectm sites, mul-
tiplied by the number of permutations of these sites wh
move all them residues. That is

nm
tot5S N

mD P0~m!, ~4!

wherePi(m) is the number of ways one can permutem sites
in such a way that onlyi positions are kept fixed. From th
relation

m! 5P0~m!1P1~m!1P2~m!1•••1Pm22~m!11 ~5!

it is possible to extract the expression forP0,

P0~m!5m! 2 (
k51

m22 S m
k D P0~m2k!21. ~6!

For largem, one can use the Stirling approximation for th
factorials in Eqs.~4!-~6!, and keep only the largest expone
term in the sum~saddle point approximation!, obtaining
nm

tot'exp(am). The constanta can be determined from th
relationnN

tot5eaN5N!, which for N536 leads toa52.66.
To proceed further in the calculation ofn, one needs to

find a simple approximation topm(DE). For this purpose,
we shall express the energy distribution of an arbitrary nu
ber of mutations as a convolution of functionsp2(DE) asso-
ciated with the swapping of two amino acids. The validity
this approximation rests on the ansatz that every couple

de-

e

FIG. 4. The distributionp(DE) associated with two pointlike
mutations for the structure displayed in Fig. 1~a! when the mono-
mers interact with the matrix listed in Table 5 of Ref.@9# ~instead of
Table 6!. The dashed line is the Gaussian fit obtained with
least-squares method.
4-4
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DESIGNABILITY OF LATTICE MODEL HETEROPOLYMERS PHYSICAL REVIEW E64 011904
mutations affect the energy of the native state independe
of the other couple of mutations. This approximation is e
pected to work also for large values ofm, where the prob-
ability of mutating neighboring sites is not negligible, b
cause the contact energy associated with the mut
residues are in any case random quantities with average
~cf. the discussion in the preceding section!. Within this sce-
nario, the number of folding sequences displaying 2m muta-
tions and whose energy in the native conformation lies ins
the energy gap can be written as

n2m'n2m
totE

0

d
dEE

2`

1`

dDE1dDE2•••dDEm21

3p2~DE1!p2~DE2!•••p2~DEm21!

3p2~DE2DE12DE22•••2DEm21!. ~7!

Making use of the energy distribution probability associa
with an amino acid swapping~composition conserving mu
tations! or with two pointlike mutations~composition non-
conserving mutations! one obtains the lower and the upp
limit of the designability of a conformation.

In what follows we shall essentially discuss the case
composition conserving mutations. Ifd is lower than the
peak associated with mutations in hot sites@as in the case o
the sequenceS36 whered52.5, cf. Fig. 2#, one should con-
volute only the peak ofp2(DE) associated with mutation
in cold sites@25#. Exploiting the fact that the convolution
of m Gaussian distributions, of the form exp@(DE

2DE2)
2/2(s2)2# is a Gaussian distribution with averag

DE2m5mDE2 and standard deviations2m5m1/2s2, it is
possible to write

n2m'n2m
tot~2pm2s2

2!21/2expS 2~DE2!2

2~s2!2
mD

3E
0

d
dDE expS 2

DE2

2m~s2!2
1

DE2DE

2~s2!2 D . ~8!

For m@d/(2s2)1/2 ~in the case ofS36 this condition means
m@2) one can neglect the first exponential factor in t
integral, in which case the integration can be carried
analytically, leading to

nm'nm
tot~pm2s2

2/2!21/2expS 2
DE2

2

4~s2!2
mD

3
2~s2!2

Ē2
S expF DE2

2~s2!2
dG21D , ~9!

where the substitution 2m→m has been made. This equatio
tells us that designability increases exponentially with
gapd. In other words, the number of sequences folding t
~compact! conformation is determined only by the gap ass
ciated with the minimum energy sequence.

We have shown that the concepts of designability~i.e., the
number of sequences folding to a given conformation! and
01190
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foldability ~i.e., thermodynamical stability of the sequenc
with low energy on the given conformation, expressed by
gap d) are intimately connected by Eq.~9!. If a protein is
stable in its native conformation, such native conformation
necessarily highly designable. Vice versa, if a conformat
is highly designable, there exist sequences with a large
folding to it.

To give a numerical evaluation of protein conformation
we make use of Eq.~8!, rewritten in the form

n5 (
m51

N
k

m
expF S a2

DE2
2

4~s2!2D mG , ~10!

wherek does not depend onm and, for the case of the struc
ture displayed in Fig. 1~a!, assumes the valuek517 ~in keep-
ing with the fact thatd52.5, DE251.2, ands250.7). In the
case in whicha.DE2

2/4(s2)2, which in the case of the
36mer under discussion impliesa.0.73, one can keep only
the largest term in the above sum. Within this approximat
one can writen'e1.9033650.631030, a number to be com-
pared withn36

tot53.7231041.
One can mention, for the sake of completeness, that

number of sequences within the gap obtained by point
mutations~which is the upper limit to designability!, is well
fitted by the function 4 exp(5m), while the total number of
sequences is 19m( m

N).

V. CONCLUSIONS

The degree of designability of a given conformation d
pends exponentially on the energy gapd. Since the number
of folding sequences is given by the integral of a univer
function ~the mutation energy distribution! carried up tod, a
quantity which also determines the thermal stability of t
designed protein, one can conclude that designability
thermal stability are strongly interconnected. In other wor
sequences displaying large gaps are both thermally st
and highly designable. Even sequences displaying, in the
tive conformation, a small gap fold on short call and sha
~in the compaction process! the conserved contacts leadin
to local elementary structures and the~postcritical! folding
nucleus@5,26#. Consequently, it is possible to obtain fro
them, through composition-conserving mutations, other
quences folding to the same native conformation and
playing a large gap. In other words, any sequence able
fold fast, folds to a highly designable conformation.

We have estimated that there are of the order of 130

sequences folding to a compact 36mer conformation, ov
total of 1041. This is only the lower limit, but let us assum
that it describes well the typical degree of designability
the designed protein. Is this number small or big? The
swer to this question has, of course, important implicatio
from the evolutionary point of view. If good folders wer
distributed homogeneously in the space of sequences~like in
the case of RNA@27#! the important parameter would b
their density, that is 10211. This number would be very low
preventing sequences from moving along neutral pathw
4-5
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~which are collections of sequences folding to the same c
formation and differing by single mutations!. Such a scenario
is very unfavorable for evolution. The situation is, howev
quite different for proteins. In fact, it has been shown@28#
that good folders group themselves in clusters and superc
ters, giving rise to quite an inhomogeneous landscape. C
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sequently, the relevant parameter that measures the de
ability of a conformation is the total number of sequenc
which conserve, in any way, the energy gap. This numb
(.1030) is very large, in particular in keeping with the fac
that over a lifespan of the order of 60 mutations occur in
genome of each person@29#.
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